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A Study of Multielement Transmission Lines*
HIROSHI KOGO~

Summary-Although many papers have been publisheU on the

subject of multielement transmission limes, the application to prac-

tical problems seems rather inconvenient. The author proposes a

solution to the general equations which relate the voltage dtierence
between the lines and the mesh current. Under particular condi-
tions, it is shown that only a single type of propagating mode exists.
In this case, the solution has been obtained by the so called ‘ ‘decom-
position method,!) i.e., assuming several virtual two element trrms-

mission lines in lieu of the existing multielement transmission line.
The problem has been solved by means of the resolved superposed

virtual lines taking into account the existing boundary condition.

INTRODUCTION

P
APERS concerning multielement transmission

lines have been proposed by many authors.l–lz

However, the majority refers strictly to the gen-

eral theorys,4 and involve complicated matrix problems;

the application of these results to simple practical prob-

lems is inconvenient. There are some simple problems

as, for instance, the coupling theory between two wave

guides,5–7 three parallel conducting lines,8 ‘g which is

treated by balanced and longitudinal or by the right

hand polarized, left hand polarized and longitudinal

modes. However, there appears to be no paper concern-

ing the practical calculations for the problem of more

than four element transmission lines.

We shall now propose another form of the multi-

transmission line problem; in a particular case it can be

easily solved by use of the “decomposition method, ”

ie., by first assuming several virtual two element trans-

mission lines concerned with the existing multielement

transmission line. The problem, has been solved by

means of the resolved superposed virtual lines, taking
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into account the existing boundary conditions.

The following results were obtained:

1)

2)

3)

Generally, n-lines have (n – 1) propagation modes,

but in particular conditions they have only one. It.

is then possible to analyze most multielement

transmission lines.

The majority of multielement line problems gen-

erally start from the fundamental linear differen-

tial equations. However, the definition of the

propagation mode derived from these has not

been explained in terms of the Maxwell equations.

As the propagation mode of the multiple line sys-

tem, it may be questioned whether the TEM wave

(perfect transverse wave) exists, and if it exists,

whether the propagation made can be TEM.

Moreover, in such a case, it is necessary to exam-

ine the relationship of the line constants.

A STUDY BASED ON ELECTROMAGNETIC WAVE THEORY

For this analysis, a perfect conductor of uniform cross

section shall exist parallel in the homogeneous dielectric

medium; the distance between each conductor is as-

sumed to be extremely shortened compared to the wave-

length. On the uniform line of arbitrary cross section

with the axis in the z direction, an electromagnetic wave

will exist in the form, exp ~(cot —~z). If all the conductors

are perfect conductors, the electromagnetic field Ez, Hz

must satisfy E== O, 8HJdn = O on these conductors.

Accordingly E,#O, H,= O (TM mode), E.= O Hz#O

(TE mode) and Ez = H, = O (TEM mode) waves on the

multiline, propagate in the general shielding line; the

number of these modes has no direct relation to any line

numbers. It is also evident that all modes are propa-

gated independently due to their orthogonal properties.

Furthermore, when the distance between these lines can

be neglected compared with the wavelength, TEM

waves alone will exist, as TE and TM waves will be cut

off. Under these conditions alone can the relation be-

tween the multiline equation and the Maxwell equations

be found.

The general equations of multilines are given as fol-

lows :

~ = ~ ?&J., ~ = ~ yrnv. (1)
m n

where V, is the potential of line r, ~, is its current and x

its directional distance for its transmission line. When

this system transmits the TEM wave, the field can be

derived from exp j(cd f @z), where f3 = uti~e.

If L,~ is the inductance per unit length and C,. is the
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capacitance z,~, y,. will be given by the following equa-

tions:

Accordingly, from (1)

Then, from (2)

m n

The left term in the above mentioned equation is a func-

tion for r alone. Therefore,

~ L/mCm, = 1,
.

The-diagonal terms become yll = -yZz . ..= -yO and the

excess terms will be 712= -yZl = ~la = . . . = ().

GENERAL SOLUTION

Eq. (1) in the previous section relates the voltage and

current of each line. The voltage difference of the lines

is used instead of the line voltage, because it is more

convenient in connection with the intrinsic transmis-

sion mode and also for handling this problem. Now, if

V,~ is the voltage difference between the arbitrary lines

-i and k, as shown in Fig. 1, then

dv,k dVl dV~
—. —. _= :2,.1. - ~ ZJ, (lo)

dx dx dx .9=1 *=]

and the current I, flowing on the line S is

or
~ = ~ YsjVs~ (11)

~ z,.y., =$, ; %-my?nn= o (Y # ?2) (3)

j=l

m where Zi~ is the series impedance per unit length and

l’,~ is the parallel admittance per unit length.
where c is the light velocity. As a simple example, the

three-line is considered:

dVl dV,
— = .2111,+2.12, — = 2.11 + 2212
d.v dx

dI, dIz

dx
— = ylvl + ymvz ~ = ymvl + y2v2. (4)

From the above equation, the following equation can / ,// -
be obtained.

d4Vl
—— (z, Y,+ 2zmym+ Z,y,) :x;
dx’

+ (2122– h’) (y,y, – ym’)vl = o.

Putting V1 = exp YX, the solution can be obtained

calculating ~.

Y = + [702 + V’~704 – 4(zlzz – Zm2) (Y1Y2 – ym2)]1/2

where

‘) ’02 = *(ZIY1 + Zzm’ym + z2y2).

Substituting the relation of (3), we will obtain

0.)’
Zlyl + Z.ym = z2y2+ zmyrn= — —

c’

z~ym + Zmy2 z Zmyl + z2Ym = ‘J

ju

y=+-yo=i-.

c

In general multiple-element transmission

matrix of the constant is written as follows:

r~ll Tlz” “ “ 7

“’=P21“’d...=

lines,

($.,+)
Fig. l—Voltage difference between arbitrary lines.

(5)
From (10) and (11)

by d’V%k
— = g I’,,’v,,

dx’

(6)
where

(12)

Note: z and y in the previous section have the following

relations:

Z~j = Zij, y,h = – Yjk (j # k), yjj = ~’ Y,,.

(7)
k

Now, in (12), we will consider the k, j component

(8) ~k~-’i of H--l; based on the specific i to set up the diag-

onal matrix from the similar transformation of H–ll’M:

the
Vk; = ~ Il~j-lWii. (14)

7’

From the above transformation, we obtain



138 IRE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES March

“ Vki = A~ exp ~D~%x + Bh exp (–< D~ix),. . (16) Substituting these relations into I’~,i

Iik = Y,ksv~kd~ = ~ ~kj’ ‘-
Yzk ~j ,,

~D,L
(18) Substituting the above mentioned equation into [17]

~=1
of (12),

where

~ji = Ai exp ~DJ’x — B exp (—<~.~).

Thus, if we adopt a pair of Vi’, Iji, the actual current

r,k will be shown by the intrinsic transmission mode.

And the calculation of the diagonal matrix will be ob-

tained by a similar transformation as follows.

Ir’-xul =O. (19)

The eigenvalue D of transmission constant r’ based

on the line i is shown by the unit matrix L’ and the un-

known X. The K-component of characteristic column

vector ~’~ belonging to this root Dm is shown as follows:

d~fim = cm I (r’ – D~u)f’ I (20)

where Cm is an arbitrary constant and (r i — Dm U) Jk is

the cofactor of k-component in (r ‘–D~ U).

SYMMETRICAL LINE

Using the above mentioned theory, we shall now carry

out a simple exercise. There are three transmission lines

placed parallel inside the shielding line number 4, as

shown in Fig. 2.

At first, the line equation is obtained as follows from

(12) and (13) :

ail=E:: ild”[r][v]‘2’)
Each element in r is obtained from (13). For instance,

r114 = ~ ‘1)(24, + zll – zzj’ – z41) Yfl

j= 1

= (z,, + 2,, – 21, – 241) FLU

+ (2,3 + 211 + 213 – Z,J Y?l

+ (z44 + zIl – z14 – 2d Y41. (22)

Other rk,i can be acquired similarly. In a particular case,

as when we consider the symmetrical line where the di-

agonal terms are equal and the excess terms are also

equal, we obtain the following equations:

where

0! = ZOYO+ 2(ZO— zm)Ym,

and

(23)

P = ZfLvo + (Zm + 20) Ym.

This transmission wave has a and ~ mode, and because

of its mutual coupling, it has complicated propagation

characteristics.

We now calculate the eigenvalue of the transmission

line,

and obtain the root a+ 2(3 and the two degenerating

roots a —~ as follows:

xl=c2+2/3= (zo+2zm)170

X,=a–p= (zo–zm)(Yo+3Ym). (24)

It is difficult to find the line propagating the modes

Al and h as in the above mentioned equations, but in a

particular case when it forms a symmetry, the roots can

be acquired by the following method:

1) The transmission line is chosen from a pair of lines

4 and 1, 2, 3 combined as shown in Fig. 3. In this case,

the admittance of a pair per unit length is 3 YO, the self-

impedance per unit length of each line is 20, and the

mutual impedance is 2Z~. The series impedance per unit

length of each line is Zo+2Z~ as the current flows in

both lines in the same direction. Therefore, the series

impedance of three lines become (ZO + 2Z~/3) and the

parallel admittance is 3 Y. Accordingly,

20 + 22.
Al = 3 Y = (20 + 2zm) Yo.

3

211 = 222 = 233 = 20, 212 = Z23 = 231 = Z~,
This coincides with Al of (24).

2) A pair of lines 2 and 3 is chosen for the transmis-
Y41 = Y42 = Y43 = Yo, Y12 = Y23 = Y31 = Ym. sion line, as shown in Fig. 4. In this case, lines 1 and 4

And, if we assume that the current flows only in the in-
are fixed by the symmetry, and no current flows through

ner surface of the shielding line,
the lines. The series impedance of lines 2 and 3 per unit

length becomes 2(20 – Z~) as the current flows in the op-

244 = o. posite direction.
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Fig. 2—Three transmission lines phaced in parallel
inside the shielding line number 4.

Fig. 3—A pair of lines 4 and 1, 2, 3 in a lump.

Fig. 4—A pair of lines 2 and 3.

As the parallel admittance between lines 2 and 3 is

Yo + v.
Y. +

2

(

Y, + v.
A, = 2(20 – Zm) r. + ———

2 )

= (20– zm)(Y, +31’7m).

This coincides with & in (24). As a result, the actual line

can be composed by choosing two lines, 1) and 2). Now,

consider the result we obtain if the arbitrary line is

adopted.

3) A pair of lines 1 and 2, 3, 4 combined is chosen for

the transmission line. In this case, h~ is calculated as fol-

lows from the same consideration:

( 2 Y.
A3= zo–zm

)
—– (v, + 2Y.).
Yo + v.

This value is not equal to both Xl and Az. Therefore, it is

clear that finding the particular line is necessary for the

intrinsic propagation. The solution of lines can be ac-

quired from the above mentioned relations, and as these

lines consist of four numbers, three equations must be

prepared. For the case of 1), the voltage between line

1, 2, 3 and 4 is calculated for V12~–1, and for the case of

2), the voltage between line 2 and 3 is calculated for

VZ_s, and Vl_~ is calculated similarly.

The line equations can be solved when :arbitrary con-

stants are determined by using the boundlary condition

of the actual lines derived from the above mentioned

equations. The relation between the actual possible

transmission lines 1) and 2) and the intrinsic propaga-

tion can obviously be obtained, as 1) and 2) are known

in this example, but if the lines are unknown, the follow-

ing method can be adopted.

First, we shall obtain the following equations from

(20) with regard to Al and A.z.

1

[1

= 3/3%(AJ 1

1

[1

+14(A2)

[

~-

&4(x2) = 3p’G(k,) – 1

@34(k2) 1 1-

(26)

-1

1or 3~2G(~Z) –1 . (27)

.0

Accordingly, we find the following relation between

the voltages Vl, V2, v~ acting as the intrinsic propagation

and the actual voltages V41, V42, V4~:

[;:1 r o 1 !l~

1V4J 11 Hr=1–1–IV,

1

(28)

110 VJ
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Thus, each actual voltage is shown as a function of

VI, V2 and v~, but when each equation is written only by

one intrinsic propagation mode, the voltage is chosen

as follows:

El=E-lil ‘2’)

[:1=[:-:1[:21 ’30)

[FFl= [xl ’31)
In this case, VI= vI, VZ =vZ and 1’s =vS. The above

mentioned equations were arranged to relate them to

the existing line, and (29) becomes the function to only

Xl and (30) and (31) are the functions to only A.z. Name-

ly, (29) and V123_4 of (25) are the same and they cor-

respond to line 1). Similarly, (30) and V2–3 are the same

and (31) and V1_2 are the same, and both equations

correspond to line 2).

DECOMPOSITION METHOD

The analysis on symmetrical lines has been described

in the previous section. Thus, if we analyze the actual

voltage as the decomposite voltage ~lzs–1, ~2–3, ~1–z

and so on, these will cause intrinsic propagation.

In a specific case where the transmission mode is

single, a similar consideration can be applied to the

usual transmission line by developing the above theory.

In general, the actual voltage Vi will be given by the fol-

lowing equation as the linear combination of the voltage

Vik where the particular lines;, k are chosen for the trans-

mission line and the line current is ceased except for the

lines ;, k:

But aik and b%~should be determined by the boundary

condition in the multiline and not by i k lines independ-

ently. The current in this case is shown as follows:

Where Yoi~ is the characteristic admittance between i

and k, it can be calculated by the following equation:

yo;~ = c ~<k (34)

where c~h is the electrostatic capacity per unit length be-

tween i and k and c is the light velocity.

We can now consider the ideal equation of the n trans-

mission line which satisfies the condition as follows. Let

us first take the condition in which the current flows

only in two arbitrary lines, namely the i, k elements,

with no current flowing in the other elements. Since the

number of independent components of voltage or cur-

rent is n — 1, we will be able to find the other if we know

the n — 1 terminal voltage or line-current.

V,k = a%heXp w&% + b,h eXp ( — w&X)

&k = yOik [a;k eXp V’~X – bik f2Xp (– V’fiX) ]

= yoik~ik. (35)

In Fig. 5, the condition in which the current flows

only between i and k is

= ~ Yo,,(%,ti,k- x,%)=0.
1

Therefore,

~’ I“ojl_($?l – X,) = O (36)
1

where ~’ shows the total summation (1, 2, 3 0 . . , n)

except j, assuming xi= O and %k = 1. Eq. (36) is (n – 2)

linear equation concerning (n – 2) of the unknown num-

bers, xl, x2, . . . , X. (except n = i, k). That is

11–Yonk

if we add a volt-

i and 1 lines, to

Solving the above mentioned equation,

age x~ times the Lk. voltage between

all the J lines with the exception of ik., the line current

except i, j becomes zero. And the ith line current be-

comes

i, = ~’ Vr),,fi,, =
1 (? ‘0’4’”$’38)

We call such a line the “fundamental transmission

line” with respect to the line element ;, k. We now di-

vide the n-line into m groups which are called line bun-

dle L(l,2, ..., g) and those bundles preserve the

same potential as shown in Fig. 6. Namely, they are to

be jointed to each line with a perfect conductor line of

infinitesimal small diameter. Thus, we can deal with the

mth transmission line. The characteristic admittance

between B (1,2, -.. , p) and L (1, 2, . . . . g) of the

arbitrary line bundle is as follows:

7)” 00.> ~=
YOBL= ~ ~ YoBbL2. (40)

b-l 1-1
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00
n

Fig. 5—Condition in which current flows only between i and k.

oOA
o

Fig. 6—Transmission line dividing some groups.

The current i~~ which runs into each element Bb in the

line bundle B and the current distributed factor a will be

D “bci

ifjb = CY’iBL. (q

Also, the Current ‘jAa which runs into each element a

in the arbitrary bundle A except BL, is derived as fol-

lows :

x’ z Y1l.,am(m)– ZA)

Vlrhen the given n transmission line is considered as a

line bundle A, B . . . M divided properly into m num-

bers, it can be regarded as a two-transmission line; the

characteristic admittance is derived by ~’ YOBDXD for
D

any two-line BL. It may be called the fundamental

transmission line on line element i, k. In n transnlis-

sion line, many fundamental lines are found by various

arrangements. Any n transmission line can be formed by

superposition of vi~, i;l, for a suitable fundamental

transmission line (n — 1), as the degree of freedom of an

n-line is (n – 1).

In this case, every line element must be used as an

element of the fundamental line at least once. What

(n – 1) fundamental transmission line should be aciopted

is easily decided by analyzing it properly according to

the given problem.

EXAMPLE: “SPLIT COAXIAL-TYPE BALCTN” AS

A THREE-TRANSMISSION LINE

Fig. 7 (a) shows the equivalent circuiit of the split co-

axial-type balun terminating with Y12, ~~’X, Ysl, neglect-

ing the earth effect. This circuit can be decomposited

from two types of transmission lines, a.s shown in Fig.

7(b) and (c).

By (40) and (42) in the previous section, the charac-

teristic admittance and the current distributed factor

a are shown as follows:

Also, the voltage divider factor w from (37) is shown as

follows :

- ~ Y,,.*2 = - Y(I,,
s

Ym
X2 = —,

Y012 + Y023

Relations between the voltage and the current in

Fig. 7(a) are derived by superposition in (b) and (c).

YOM
11=– il - iz

Ylm + Y023

V31 = ‘U2.

Applying the boundary condition at the termination

1= O, voltage and current at this surface are shown as

follows :

II = YIZ~23 – ( YIZ + Y31)~31

(
Y(IJ2 I’olz

—iz= – j Y031 +

)

COt ~lo7J2 = Ys131J2
Y031 + Y023

il = (YM + Yz3)v1

( Y’o12Y023 _.

+ r,, —
)

Y,23 Vz.
Yolz + Y023 YO12 + Y023
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[

--------- - ‘6,

3

(a)

(b) (c) (d)

Fig. 7—Split coaxial type balun. (a) Construction. (b) Equivalent circuit. (c), (d) Decomposite circuit.

Input admittance Yin is shown as follows:

Y,n = ~
VI

( F,, + V,,) ( v,, + US,,) + Y23~12
.—

Y0232 Yo#
~,, + Ys13 + Y,2 — + Y23

( 170,2+ Y023)’ (Y-o,, + Y023)2

In the case of symmetrical split, Y012 = Y023, then

4(Z1 + 22 + z-l?)

Yin =
4zIzz + zlz~ + .22zR

where

1 1 1
Z1=ZJ Z2=E, zR =

Y31 + YS13

When a segment of the outer split cylinder is shorted to

the central conductor,

Y12 = co, then yin = 4(Yzs + Y31 + Y,13),

putting

Y’3 + Y31 = YR

Fin = 4( Y~ + Ys1.3).

In other words, the input admittance is equal to four

times the load YE and slot admittance Ysw

CONCLUSION

The main object of this paper is to discuss transmis-

sion modes and, under particular conditions where there

is only one mode in the line, the adoption of the specific

solution: the decomposition method.

This analysis based on the decomposition method can

be used to produce useful solutions for many complex

practical problems, i.e., balun, diplexer, etc.
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