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A Study of Multielement Transmission Lines*
HIROSHI KOGO?

Summary—Although many papers have been published on the
subject of multielement transmission lines, the application to prac-
tical problems seems rather inconvenient. The author proposes a
solution to the general equations which relate the voltage difference
between the lines and the mesh current. Under particular condi-
tions, it is shown that only a single type of propagating mode exists.
In this case, the solution has been obtained by the so called ‘‘decom-
position method,” i.e., assuming several virtual two element trans-
mission lines in lieu of the existing multielement transmission line.
The problem has been solved by means of the resolved superposed
virtual lines taking into account the existing boundary condition.

INTRODUCTION

’ APERS concerning multielement transmission
P lines have been proposed by many authors.!™?

However, the majority refers strictly to the gen-
eral theory®* and involve complicated matrix problems;
the application of these results to simple practical prob-
lems is inconvenient. There are some simple problems
as, for instance, the coupling theory between two wave
guides,’7 three parallel conducting lines,?® which is
treated by balanced and longitudinal or by the right
hand polarized, left hand polarized and longitudinal
modes. However, there appears to be no paper concern-
ing the practical calculations for the problem of more
than four element transmission lines.

We shall now propose another form of the multi-
transmission line problem; in a particular case it can be
easily solved by use of the “decomposition method,”
1.e., by first assuming several virtual two element trans-
mission lines concerned with the existing multielement
transmission line. The problem has been solved by
means of the resolved superposed virtual lines, taking

* Manuscript received by the PGMTT, March 13, 1959; revised
manuscript received, September 22, 1959.
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into account the existing boundary conditions.
The following results were obtained:

1) Generally, n-lines have (#—1) propagation modes,
but in particular conditions they have only one. It
is then possible to analyze most multielement
transmission lines.

2) The majority of multielement line problems gen-
erally start from the fundamental linear differen-
tial equations. However, the definition of the
propagation mode derived from these has not
been explained in terms of the Maxwell equations.

3) As the propagation mode of the multiple line sys-
tem, it may be questioned whether the TEM wave
(perfect transverse wave) exists, and if it exists,
whether the propagation made can be TEM.
Moreover, in such a case, it is necessary to exam-
ine the relationship of the line constants.

A STUDY BASED ON ELECTROMAGNETIC WAVE THEORY

For this analysis, a perfect conductor of uniform cross
section shall exist parallel in the homogeneous dielectric
medium; the distance between each conductor is as-
sumed to be extremely shortened compared to the wave-
length. On the uniform line of arbitrary cross section
with the axis in the z direction, an electromagnetic wave
will exist in the form, exp j(wt—Bz). If all the conductors
are perfect conductors, the electromagnetic field E,, H,
must satisfy E,=0, dH,/0n=0 on these conductors.

Accordingly E.#0, H,=0 (TM mode), E,=0 H,#0
(TE mode) and E,=H,=0 (TEM mode) waves on the
multiline, propagate in the general shielding line; the
number of these modes has no direct relation to any line
numbers. It is also evident that all modes are propa-
gated independently due to their orthogonal properties.
Furthermore, when the distance between these lines can
be neglected compared with the wavelength, TEM
waves alone will exist, as TE and TM waves will be cut
off. Under these conditions alone can the relation be-
tween the multiline equation and the Maxwell equations
be found.

The general equations of multilines are given as fol-
lows:

= E zrmIWL; = Z yrnVn (1)

where V., is the potential of line 7, I, is its current and x
its directional distance for its transmission line. When
this system transmits the TEM wave, the field can be
derived from exp j(wt =+ B2), where 8=w\/ue.

If L, is the inductance per unit length and C,, is the
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capacitance zm, yr» Will be given by the following equa-
tions:

Srm = jUJer; Ven = jwcrn-
Accordingly, from (1)
w
=+ 2 Lol = £ D Caba @

Then, from (2)

Ve= 22 Lin 2 CounVa

The left term in the above mentioned equation is a func-
tion for r alone. Therefore,

Z ercmr = 17 E ercmn =0 (1’ # n)

or
Z ZemY¥mr =
m

where ¢ is the light velocity. As a simple example, the
three-line is considered:

— W

2 Z ZrmYmn = 0 (7’ # ”) (3)

A% dVs

— = g11d, +2.12, = Zml1 + 2212

dx dx

aly dil;

—— =y Vi+ Vs — = Vi + yVe. 4
dx dx

From the above equation, the following equation can
be obtained.

aw,
dx!

dZVl
— (Z:Y1 4 2z0ym + zzyz) —_

+ (2122 — zm“’) (ylyz — ¥,V = 0. (5)

Putting V1=exp vx, the solution can be obtained by
calculating =.

y == [y £ Vvt — 4(z152 — =) (h1yz — 3D [V (6)

where
o> = 2(zy1 + 2209m + 2292).

Substituting the relation of (3), we will obtain

(02
2191 + ZmYm = 22Y2 + IV = — -
C
21Ym + Zmy2 = Zmy1 + Z2Ym = 0, (7)
jw
y=tyo= & —" (8)
4

In general multiple-element transmission lines, the
matrix of the constant is written as follows:

Y11 Yie -,
- 0

S B
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TheFdiagonal terms become yy=1s - - -=7; and the
excess terms will be yp=ya=y3= - - -=0.

GENERAL SOLUTION

Eq. (1) in the previous section relates the voltage and
current of each line. The voltage difference of the lines
is used instead of the line voltage, because it is more
convenient in connection with the intrinsic transmis-
sion mode and also for handling this problem. Now, if
V. is the voltage difference between the arbitrary lines
1 and &, as shown in Fig. 1, then

dVy dV; de n i
= Lids — D Zyd, 10
dx dx dx § g k (10)
and the current 7, flowing on the line S is
ar,
- = Z ViV (11)
dx F=1

where Zy; is the series impedance per unit length and
Y. is the parallel admittance per unit length.

@
O

tf

O /Véz

,/
g )
T

— Vi
Fig. 1-—Voltage difference between arbitrary lines.

From (10) and (11)

a*v, 3
A S (12)
dxg =1
where
Tt = Z (Zig+ Zios — Zii — Zis) Vs (13)

=1

Note: 2 and ¥ in the previous section have the following

relations:
— g — 4
si=Ziy yu=—Yu G#kE, yi=2' Ya.
k

Now, in (12), we will consider the k, j component
Hy;7' of H'i based on the specific ¢ to set up the diag-
onal matrix from the similar transformation of H-I'H

Vit = Z ij“”Vij. (14)
p
From the above transformation, we obtain

Z{ Z Hy,"TizH sm} = Dy},

d2Vk

(15)
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. Vii = Apexp /Dy + Brexp (—v/Dyx), (16)
dal; al
dx I dx k
z Yo .
Iy = szf Vadx = Zijl i 1, (18)
J=1 \/ i
where

V,i= Ad;exp vD,'x — B exp (—v/D,%x).

Thus, if we adopt a pair of V%, I;% the actual current
I, will be shown by the intrinsic transmission mode.
And the calculation of the diagonal matrix will be ob-
tained by a similar transformation as follows.

|Iri— XU| =0 (19)

The eigenvalue D of transmission constant I'* based
on the line 7 is shown by the unit matrix U and the un-
known X. The K-component of characteristic column
vector ¢*" belonging to this root D, is shown as follows:

¢t = Cp| (Di — DyU)"| (20)

where C, is an arbitrary constant and (I''—D,,U)* is
the cofactor of k-component in (I''— D, U).

SYMMETRICAL LINE

Using the above mentioned theory, we shall now carry
out a simple exercise. There are three transmission lines
placed parallel inside the shielding line number 4, as
shown in Fig. 2.

At first, the line equation is obtained as follows from
(12) and (13):

2 Vi It Tt TV
ﬁ V42J = | Ty Tt Tt || Vi | = [T][V]. (21)
x

Vs Dsi* Tt Tagtld LVas

Each element in I' is obtained from (13). For instance,

4

:[1114 == Z (D(Z4] + Ziu —

=1

sz - Z41) Y]l

= (Z42 + le - ZIZ - Z41) YZI
+ (Z43 + le + Z13 - Z41> Y31

+ (Zu+ Zu— Zy— Zy ¥ (22)

Other I'z,? can be acquired similarly. In a particular case,
as when we consider the symmetrical line where the di-
agonal terms are equal and the excess terms are also
equal, we obtain the following equations:

Iy = Zoy = Lz = Zy, Zig = Lys = Zs1 = Zn,
Y41 = Y42 = Y43 = YO) y12 = Y23 = Y?)l = Ym
And, if we assume that the current flows only in the in-

ner suriace of the shielding line,

Z44 = 0
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Substituting these relations into I',?
I‘114 = Iyt = F334 = Zoyo -+ Z(Zo - Zm) Vo
P124 = P324 = I‘314 == ZmYO + (Zm - Zo) Yo-

Substituting the above mentioned equation into [I']
of (12),

a 8 /3—|
[Fl=18 « 8 (23)
8 B8 aJ
where
a=ZeVo+ 2(Zo — Zn) Vm,
and

i8 = ZmYO + (Zm + ZO) Ym.

This transmission wave has « and 8 mode, and because
of its mutual coupling, it has complicated propagation
characteristics.

We now calculate the eigenvalue of the transmission
line,

6 8 a— A

and obtain the root a-+28 and the two degenerating
roots a—f3 as follows:

M=a+28=(Zo+27.)7,

N=a—8=(Zo— Z)(Vo+ 3V). (24)

It is difficult to find the line propagating the modes
A1 and Ap as in the above mentioned equations, but in a
particular case when it forms a symmetry, the roots can
be acquired by the following method:

1) The transmission line is chosen from a pair of lines
4 and 1, 2, 3 combined as shown in Fig. 3. In this case,
the admittance of a pair per unit length is 3V, the self-
impedance per unit length of each line is Z;, and the
mutual impedance is 2Z,,. The series impedance per unit
length of each line is Zo+2Z, as the current flows in
both lines in the same direction. Therefore, the series
impedance of three lines become (Z,+42%Z,/3) and the
parallel admittance is 3Y. Accordingly,

. _ Sty (Zo + 22,0 Y.
This coincides with Ay of (24).

2) A pair of lines 2 and 3 is chosen for the transmis-
sion line, as shown in Fig. 4. In this case, lines 1 and 4
are fixed by the symmetry, and no current flows through
the lines. The series impedance of lines 2 and 3 per unit
length becomes 2(Zy—Z,,) as the current flows in the op-
posite direction.
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Fig. 2-——Three transmission lines placed in parallel
inside the shielding line number 4.

Fig. 4—A pair of lines 2 and 3.

As the parallel admittance between lines 2 and 3 is

YO + Ym
" 2
Vot Vo
Ao = 2(Zy — Zm)<ym + J;f~>

= (Zo— Z.)(Yo+ 3V).

This coincides with N\; in (24). As a result, the actual line
can be composed by choosing two lines, 1) and 2). Now,
consider the result we obtain if the arbitrary line is
adopted.

3) A pair of lines 1 and 2, 3, 4 combined is chosen for
the transmission line. In this case, Az is calculated as fol-
lows from the same consideration:
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m

}\3 = <Z0 —- Zm A)(YO + 2Ym).

I7() + Ym

This value is not equal to both A\; and \;. Therefore, it is
clear that finding the particular line is necessary for the
intrinsic propagation. The solution of lines can be ac-
quired from the above mentioned relations, and as these
lines consist of four numbers, three equations must be
prepared. For the case of 1), the voltage between line
1, 2, 3 and 4 is calculated for Vi.s_4, and for the case of
2), the voltage between line 2 and 3 is calculated for
Vo3, and Vo is calculated similarly.

Vigss = A1 exp v\x + By exp (—+/A1%),
Vos = Asexp vAax + By exp (—vA),

Vie = Asexp /A + Bsexp (—4/ha). (25)

The line equations can be solved when arbitrary con-
stants are determined by using the boundary condition
of the actual lines derived from the above mentioned
equations. The relation between the actual possible
transmission lines 1) and 2) and the intrinsic propaga-
tion can obviously be obtained, as 1) and 2) are known
in this example, but if the lines are unknown, the follow-
ing method can be adopted.

First, we shall obtain the following equations from
(20) with regard to A; and \..

M o — A; 8 T
52400 B a — A
¢ 00 | = (A1) | — ’ ’
5,100 8 o — Ay
8 B
L la — A B s—
m 1
= 38%0\) | 1 (26)
1
B0 0 ~ 1
$2*00 | = 36%(Np) | —1|o0r 36%(\s) | —1 (27
B310) L1 _ 0

Accordingly, we find the following relation between
the voltages 91, v, v3 acting as the intrinsic propagation
and the actual voltages Vii, Vis, Vis:

V41 1 0 1 !7 U1
V42 = 1 ——1 *“1 Vo
V43J l,l 1 0 L V3

A exp vAix + By exp (— /M)
Asexp Ak + B, exp (—\/ﬁx)
Vg = A3 exp '\/)\-296 + B;; .4 (—\/)sz).

(28)

where

I

V1

i

V2
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Thus, each actual voltage is shown as a function of
v1, ¥2 and 23, but when each equation is written only by
one intrinsic propagation mode, the voltage is chosen
as follows:

Vil 10 17 w0
Vil=|1-0—=1{|0 (29)
vl L1 1 ollol
T 07 [1 0 17707
—Vil=]1 =1 =1]] v (30)
L v Lt 1t ollol
T Vsl L0 1707
—Vi|=11-1—-1]|l0 (31)
Lo d L1 1 olL sl

In this case, Vi=9;, Vo=9, and Vs=v;. The above
mentioned equations were arranged to relate them to
the existing line, and (29) becomes the function to only
A and (30) and (31) are the functions to only As. Name-
ly, (29) and Viss 4 of (25) are the same and they cor-
respond to line 1). Similarly, (30) and V3 are the same
and (31) and V3., are the same, and both equations
correspond to line 2).

DecoMPosITION METHOD

The analysis on symmetrical lines has been described
in the previous section. Thus, if we analyze the actual
voltage as the decomposite voltage Vies s, Va3, Vi-s
and so on, these will cause intrinsic propagation.

In a specific case where the transmission mode is
single, a similar consideration can be applied to the
usual transmission line by developing the above theory.
In general, the actual voltage V; will be given by the fol-
lowing equation as the linear combination of the voltage
v, where the particular lines 7, £ are chosen for the trans-
mission line and the line current is ceased except for the
lines 7, k-

Vi= A;exp v/Aox + Biexp (—v/Aow) = D, v
k

2 [aa exp vNox + b exp (—vAe@)].

k

(32)

But a4 and b, should be determined by the boundary
condition in the multiline and not by ¢ & lines independ-
ently. The current in this case is shown as follows:

T = YOik[aik €Xp \/ﬁx — bu exp (—\/X_ox)] (33)

Where Yy is the characteristic admittance between %
and %, it can be calculated by the following equation:

Vo = ¢ Ca (34)

where Cy is the electrostatic capacity per unit length be-
tween ¢ and 2 and ¢ is the light velocity.

We can now consider the ideal equation of the # trans-
mission line which satisfies the condition as follows. Let
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us first take the condition in which the current flows
only in two arbitrary lines, namely the 4, % elements,
with no current flowing in the other elements. Since the
number of independent components of voltage or cur-
rent is # — 1, we will be able to find the other if we know
the #—1 terminal voltage or line-current.

Ve = Qi €XP VAo + b exp (— /Ao
T = YOik[aik €xXp \/Ex — b exp (—\/?\—ox)]
= Youli.

(35)

In Fig. 5, the condition in which the current flows
only between ¢ and % is

iy = 22 Vojwj = 22 Vou(vjs + var)
1 l
= Z/ Yojl(xﬂ')ik _ xﬂﬂg) = 0
3

Therefore,

Z/ Y()jl(xl — x,) = (36)
2

where D/ shows the total summation (1, 2, 3 - - -, )
except j, assuming x;=0 and x:=1. Eq. (36) is (n—2)
linear equation concerning (#—2) of the unknown num-
bers, %1, %2, + - -, x» (except n=14, k). That is

[ — Z' YVouu Yoz + - Yo [ @17 " — YVou]
1
Yior — Zl You | = | — Vo
l . (37
Yoo+ - — Z' Vou Xn — I}Onk
L 1 JL L a

Solving the above mentioned equation, if we add a volt-
age x; times the ¢.k. voltage between ¢ and / lines, to
all the / lines with the exception of 1.£., the line current
except 4, 7 becomes zero. And the ¢th line current be-

comes
i = Z' Yoty = ( Z' Yonxl)@k- (38)

1 1

We call such a line the “fundamental transmission
line” with respect to the line element 7, 2. We now di-
vide the n-line into m groups which are called line bun-
dle L (1, 2, - - -, ¢ and those bundles preserve the
same potential as shown in Fig. 6. Namely, they are to
be jointed to each line with a perfect conductor line of

infinitesimal small diameter. Thus, we can deal with the
mth transmission line. The characteristic admittance

between B (1, 2, - -, p)and L (1, 2, - - -, q) of the
arbitrary line bundle is as follows:
Y4 q ¥4 q
igy = Z Z ippa = Z Z YoperilrL 39
b=1 l=1 b=1 I=1
b4 q
Yoz = 22 2 Yomra. (40)

b=1 I=1
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Fig. 5—Condition in which current flows only between 7 and k.

0
5
BN

(1—Xo)Ver
@ L
Fig. 6—Transmission line dividing some groups.

The current 2z which runs into each element Bb in the
line bundle B and the current distributed factor o will be

iy = E’ Z ipbpd = Z' Z Y BopaxnisyL
D d D 4
ZI Z Yosopaxp Z/ Z Yopeparp
D d . D d .
iy = 1
> Yosp¥p . >3 YVopepako B
D D b 4

(41)

(42)

iBb = aiBL-

Also, the current 24, which runs into each element @
in the arbitrary bundle 4 except BL, is derived as fol-
lows:

Z’ Z YOAaDd(xD - xA)
D 4
fae = 2 >0
A ZD: ; Ao 33 > iV opspatn
D

b Ed

(43)

iBL.

When the given # transmission line is considered as a
line bundle 4, B - - - 3 divided properly into m num-
bers, it can be regarded as a two-transmission line; the
characteristic admittance is derived by 2/ Voppxp for

D

any two-line BL. It may be called the fundamental
transmission line on line element 4, k. In n transmis-
sion line, many fundamental lines are found by various
arrangements. Any # transmission line can be formed by
superposition of vy, 44 for a suitable fundamental
transmission line (z—1), as the degree of freedom of an
n-line is (n—1).
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In this case, every line element must be used as an
element of the fundamental line at least once. What
(n—1) fundamental transmission line should be adopted
is easily decided by analyzing it properly according to
the given problem.

ExaMrLE: “SrLIT COAXIAL-TYPE BALUN” As
A THREE-TRANSMISSION LINE

Fig. 7(a) shows the equivalent circuit of the split co-
axial-type balun terminating with Yis, Y3, V31, neglect-
ing the earth effect. This circuit can be decomposited
from two types of transmission lines, as shown in Fig.
7(b) and (c). '

By (40) and (42) in the previous section, the charac-
teristic admittance and the current distributed factor
« are shown as follows:

YOZI + I/‘()23

Y012
Yoo+ Voos

Y013~2 =

Also, the voltage divider factor x, from (37) is shown as
follows:

- Z Yosste = — Von
s
Yo
x2 = ————
Yoo+ Voos

Relations between the voltage and the current in
Fig. 7(a) are derived by superposition in (b) and (c).

7 Y12 . .
1= — W — 12
Yosa + Voos
Iy =4
Yiie
Veg =09y — —————— 12
Yoz Vos

V31 = Vg,

Applying the boundary condition at the termination
1=0, voltage and current at this surface are shown as
follows:

I = ViV — (Yot V)V
Iy = (Vis+ Vo)V + YoV
— g = —j(Y(m + —YOS—ZYEZ-—) cot Blove = Y1302
Yost + Yoos
1= (Vs + V)

Y023 YOl'Z
4+ Vi -
I)'-012 + I/023 If012 + Y023

Y23> V9.
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Fig. 7—Split coaxial type balun. (a) Construction. (b) Equivalent circuit. (¢), (d) Decomposite circuit.

Input admittance Yi, is shown as follows:

11
Yin = —
k%8
(Yio+ Vo) (Va1 + Visis) + YVosVro
- Voas? Vool
Va+ Vs + Ve ———7—+7Y

(Y012 + Y023)2 # (Y012 _I' Y023)2

In the case of symmetrical split, ¥o12= V23, then

_ WZi+ Z2+ Zr)
47174 + Z1Zr + Z2Zr

in

where
1 1 1

y Ly = ) =
Vs Vs Yo+ Yes

Zp =

Z1=

When a segment of the outer split cylinder is shorted to
the central conductor,

Yio= o, then Vi, = 4(Y23 + Ve + Ysl3),

putting
I/v23 + I/.'31 = YR
Vion = /(Y 4+ Ye).

In other words, the input admittance is equal to four
times the load Y& and slot admittance Y,is.

CoNCLUSION

The main object of this paper is to discuss transmis-
sion modes and, under particular conditions where there
is only one mode in the line, the adoption of the specific
solution: the decomposition method.

This analysis based on the decomposition method can
be used to produce useful solutions for many complex
practical problems, z.e., balun, diplexer, etc.
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